A predictive, size-dependent continuum model for dense granular flows.
نویسندگان
چکیده
Dense granular materials display a complicated set of flow properties, which differentiate them from ordinary fluids. Despite their ubiquity, no model has been developed that captures or predicts the complexities of granular flow, posing an obstacle in industrial and geophysical applications. Here we propose a 3D constitutive model for well-developed, dense granular flows aimed at filling this need. The key ingredient of the theory is a grain-size-dependent nonlocal rheology--inspired by efforts for emulsions--in which flow at a point is affected by the local stress as well as the flow in neighboring material. The microscopic physical basis for this approach borrows from recent principles in soft glassy rheology. The size-dependence is captured using a single material parameter, and the resulting model is able to quantitatively describe dense granular flows in an array of different geometries. Of particular importance, it passes the stringent test of capturing all aspects of the highly nontrivial flows observed in split-bottom cells--a geometry that has resisted modeling efforts for nearly a decade. A key benefit of the model is its simple-to-implement and highly predictive final form, as needed for many real-world applications.
منابع مشابه
Stationary shear flows of dense granular materials: a tentative continuum modelling.
We propose a simple continuum model to interpret the shearing motion of dense, dry and cohesion-less granular media. Compressibility, dilatancy and Coulomb-like friction are the three basic ingredients. The granular stress is split into a rate-dependent part representing the rebound-less impacts between grains and a rate-independent part associated with long-lived contacts. Because we consider ...
متن کاملNumerical Simulation of Granular Column Collapses with Pressure-Dependent Viscoplastic Model using the Smoothed Particle Hydrodynamic Method
This paper presents a numerical analysis of granular column collapse phenomenon using a two-dimensional smoothed particle hydrodynamics model and a local constitutive law proposed by Jop et al. This constitutive law, which is based on the viscoplastic behaviour of dense granular material flows, is characterized by an apparent viscosity depending both on the local strain rate and the local press...
متن کاملA Theory of Cooperative Diffusion in Dense Granular Flows
Dilute granular flows are routinely described by collisional kinetic theory, but dense flows require a fundamentally different approach, due to long-lasting, many-body contacts. In the case of silo drainage, many continuum models have been developed for the mean flow, but no realistic statistical theory is available. Here, we propose that particles undergo cooperative displacements in response ...
متن کاملNonlinear elasto-plastic model for dense granular flow
This work proposes a model for granular deformation that predicts the stress and velocity profiles in well-developed dense granular flows. Recent models for granular elasticity (Jiang and Liu 2003) and rate-sensitive plastic flow (Jop et al. 2006) are combined into one universal granular continuum law, capable of predicting flowing regions and stagnant zones simultaneously in any arbitrary 3D f...
متن کاملAnalytical solution of the μ(I)−rheology for fully developed granular flows in simple configurations
Using the μ(I) continuum model recently proposed for dense granular flows, we study theoretically steady and fully granular flows in two configurations: a plane shear cell and a channel made of two parallel plates (Poiseuille configuration). In such a description, the granular medium behaves like a fluid whose viscosity is a function of the inertia. In the shear plane geometry our calculation p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 110 17 شماره
صفحات -
تاریخ انتشار 2013